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Abstract:

Cognition has evolved such that it can quietly reflect upon the deep
mystery of its origin. However, such highs were not achieved by
evolving synaptic profiles alone. Natural life-forms are the result of
an evolutionary lineage in which every aspect of a species was at
some time subject to change.

Traditional experiments in evolutionary robotics have focussed on
evolving neural network weights. Here we extend the techniques of
evolutionary robotics to evolve further domains of plasticity: sensor
and network morphologies. Our aim is to explore the effect of these
additional domains on the evolutionary process.

Avoidance and detour behaviours are evolved in populations of
simulated robots controlled by perceptron, dynamic-recurrent and
sparsely connected neural networks. Each network class is trialled
with fixed, seeded and fully evolved sensor morphologies.
Experimental results suggest that with full evolution many more
behavioural traits can be explored but that this opening up of trait
space slows down and sometimes confounds evolution. Despite start-
up difficulties, fitter agents are possible when more of the design
process is left to evolution.
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1 Introduction:

The purpose of this project is to begin an exploration into the effects of
additional domains of plasticity on evolvability. In this introduction we begin with some
general theoretical groundwork to define what is meant by a domain of plasticity and its
connection to embodiment and behaviour. After introducing recent work in this area we
focus on the task in hand and the hypothesis under examination.

1.1 Embodiment.

One possible characterisation of artificial life research is that of the study of
embodied and embedded cognition. The language is found in diverse works from the
theoretical biology of Maturana and Varela to the practical robot building of Rodney
Brooks (Maturana and Varela 1987, Brooks 1990). Yet this widespread usage conceals a
veritable plethora of meanings; considering that one may ‘embody an ideal’ the situation
is certainly complex.

Attempts to clarify our understanding (Quick, Dautenhahn and Nehaniv 1999,
Sharkey and Ziemke 1999, Ziemke 2001) point out this wide usage and derive a number
of connected concepts. Quick et al. suggest an embodied system be structurally coupled
to its environment through mutual perturbation, either in this world or in virtual
environments (/bid.) Although this offers little in discrimination it defines a baseline
minimum condition for embodied cognition. This leads on to physical and morphological
embodiment, the significance of which is highlighted by Rolf Pfeifer amongst others
(Pfeifer 1999). The shapes and material affordances of our physical embodiment both
enable and constrain cognitive function. For example, Barbara Webb's work exploring
con-specific mate location in crickets demonstrates how the shape and material of the
cricket tracheal fubes enables phonotaxis (Webb 1995).

Ziemke observes that cognitive systems are also historically embodied; their
behaviour is determined by the history of their interactions with their world (Ziemke
2001). Maturana and Varela consider two distinct forms of historical embodiment, those
of the phylogenetic and the ontogenetic histories of an entity (Maturana and Varela
1987). They embrace both the slow adaptation of species to their changing environment
and the developmental or growth cycle, including lifetime learning, of individuals within
that species. A final sense of embodiment is derived from the phenomenological
experience of our worlds (Sharkey and Ziemke 1999). VonUexkull discussed the
importance of ‘umwe/t’as early as 1928. This is the world of attention, a perceptual
subset peculiar to a species. Maturana and Varela argue for their being a
phenomenological experience of an umwe/t to cohere and unify a meta-cellular
autopoietic entity's being (Maturana and Varela 1987). This phenomenological world can
also be understood through the value projections an entity makes in attending to its
world's affordances.

So, one can be embodied across (at least) four related modes: the structural,
physical, historical and the phenomenological, each of which enables cognition in some
way. We concur with Maturana and Varela in characterising cognition as that which living
things do to maintain their autopoietic identity (/bid). Cognitive entities adapt to
environmental perturbation so as to maintain their being in the world. Now, adaptation
requires plasticity. We suggest that the plasticity required to support cognition is found



across each of the aforementioned modes of embodiment. Further, the remarkable
complexity and ingenuity found in high order cognition is enabled by these modes in
concert. A fully embodied agent supports plasticity across all the interrelated modes of
its being. It is this total plasticity that enables cognition to reach such highs as self
investigation.

Just as embodiment might be understood through connected modes that enable
total plasticity, total plasticity can be bundled into connected domains. A domain
contains a set of closely related parameters that determine an entity in a way which
might have been otherwise. For example one might consider a cross-species domain such
as leg number, natural creatures can have 2, 4, 6, 8 or many legs; a domain of
phylogenetic plasticity. At a closer level there are material and mechanical possibilities
for each leg type and in individual legs there are ontogenetic morphological variations. In
some sense each of these domains of plasticity supports the complexity of cognition
found in creatures embodying them.

This substantial philosophical thesis is left largely unsupported here. We wish
only to introduce the notion that there are many modes of embodiment, each of which is
significant to our understanding of cognition in natural systems. Each supports plasticity,
and plasticity is what enables the richness of adaptive behaviour in living creatures. No
strong identification or denomination is intended. Domains of plasticity are linguistic
constructs intended as tools in our exploration; we are not to be bewitched (c.f.
Wittgenstein 1949).

1.2 Evolving Embodiment.

In the 10 years since its conception evolutionary robotics has become a
flourishing research discipline. Notable successes include navigation (Floreano and
Mondada 1996a), garbage collection (Nolfi 1997) and even legged locomotion (Jakobi
1998). These are classic examples in a field dominated by the evolution of controllers
for fixed morphology agents. Evolution of this single domain of plasticity reflects the
easy availability of 'off the shelf' robots such as the ubiquitous Khepera and the
considerable difficulty of real world physics simulation. Nevertheless, as early as 1994
Karl Simms began the co-evolution of body morphology and controller, and Harvey,
Husbands and Cliff evolved sensor morphologies for a vision system in a real world robot
(Simms 1994, Harvey et al. 1994).

In recent years there has been a growing appreciation for the role of physical
and morphological embodiment. For example Pfeifer (1999) has shown how clustering
behaviour in a population of real world agents depends critically on their morphology.
Developmental cycles exploring ontogenetic embodiment feature in the work of
Eggenberger (1996) and Dalliert and Beer (1996). Although these often focus on
controller genesis, Josh Bongard has evolved box-pushing agents whose simulated
physical structure was developed through a model genetic regulatory network (Bongard
and Pfeifer 2001). In similar work, Lipson and Pollock (2000) have evolved real world
agents based on L-system fractals where the evolved locomotion behaviours depend on
their physical morphology as concatenations of limbs.



To employ the parlance each of these projects extends evolutionary robotics
into a new domain of plasticity. Some of this work involves ceding the parameterisation
of additional morphological features to an evolutionary algorithm; seen in the evolution
of biped morphology by Bongard and Paul (2001) or the development of neural network
connectivity in Gruau (1994). Other work evolves a process to support lifetime plasticity
such as the plastic neurocontrollers of Di Paolo (2000) or Floreano and Mondada
(1996b). Of particular interest to this work are those domains of plasticity which
directly impinge on the evolvability of an agent.

Evolvability is to be understood in two senses. In simple terms, that system
which produces fitter agents more quickly might be considered the more evolvable
system. On a deeper level we look for behavioural strategies which have been enabled by
additional plasticity. A strategy or behaviour can be understood as a trajectory through
behaviour space; a meta-dynamical-system determined by the agent-environment
coupling and their individual dynamical sub-systems. For example looping and direct
strategies are seen in simple phototropism; both are attractors within the behaviour
space of the given agent-world dynamics.

Figure 1.2.1: Common trajectories in single light phototropism space.

A domain of plasticity may increase evolvability through enabling new attractors in
behaviour space which could not have been found otherwise. This dynamical systems
description opens the door to another characterisation of a domain of plasticity. Such a
domain would contain a closely related set of state space variables, such as sensor
parameters or network weights or structure parameters.

1.3 The Hypothesis.

Having operationalised a domain of plasticity as a connected set of variables
embodied by an agent to support adaptive behaviour, we can state the driving hypothesis
of this work:

that additional domains of plasticity increase evolvability.
Such a hypothesis is explored through the evolution of avoidance and detour behaviours

in populations of simulated agents. Exploration is facilitated through comparable
evolution of sensor morphologies and control architectures - two domains of plasticity.



1.4 Related Work.

Systematic theoretical analysis of artificial evolution began with Holland's work
on schema theory (Holland 1975) and extends to modern work understanding neutrality
(Barnett 2001), the Baldwin Effect (Mayley 1996) or co-evolution (Noble and Watson
2001). Similarly, the philosophical and practical implications of embodiment are widely
explored within cognitive science (Merleau-Ponty 1962, Clarke 1997). This work brings
both of these strands together as a practical project in evolutionary robotics.

Sensor evolution also features from the very beginning. We have already
mentioned the work of Husbands, Harvey and team at Sussex University in evolving
visual morphologies for real world robots (see Husbands et a/ 1996). Cliff and Miller
applied an L-system grammar to developing both the sensors and control architecture in
a simulated predator-prey system (Cliff and Miller 1995). More recently Balakrishnan
and Honavar evolved the relative placement and range of sensors on a simulated agent
and demonstrate increased task performance (Balakrishnan and Honavar 1996). Mark,
Polani and Uthmann have explored eye width and number in evolved Braitenberg vehicles
trialled on an incrementally more complex photo-tropism task (Mark et a/ 1998). Agents
are shown to evolve higher resolution vision as task complexity increases.

Object avoidance has been studied extensively in Floreano and Mondada (1994),
Salomon (1996) or Huber, Mallot and Bulthoff (1996), amongst many others. The detour
task was inspired by studies of detour behaviour in frogs by Michael Arbib (1982, 1987)
although the work reported here is not meant to be biologically defensible or to
implement schema theory. Use of the detour task /n abstraction is found in Migliano,
Denaro and Tascini (1998). Theirs is a very much simplified model; the agent can see
both the light and continuous walls at all times.

This work is intended fo contribute to our theoretical understanding of artificial
evolution through the extension of evolved parameters into the realm of embodiment.
Following inspiration from the literature, evolved sensor and controller morphologies are
applied fo increasingly complex tasks and their contribution to evolvability assessed.



2 Methods:

In this section we introduce the methods used fo complete the project.
Beginning with the controllers, we embody and situate the agents in their world before
discussing the algorithms responsible for their evolution. We end by drawing these
elements together into the experiment.

2.1 Artificial Neural Network Controllers.

The agents are controlled by artificial neural networks. Three architectures of
increasing complexity were trialled based on perceptrons (Rosenblatt 1962) and
dynamic-recurrent neural networks (Beer and Gallagher 1992).

In the perceptron network each node is governed by the equations:
a= ZW‘/xj and y=0(a) 1, 2
)

where y is the output of the node, a the activation, x;the input from the /™ node of the
preceding layer and w; the synaptic weight. The network morphology includes two layers,
a non-summing input layer with one node per sensor and a two node output layer. Evolved
network parameters include the weights and bias terms for each node; evolved within
the range [-5, 5] to best utilise the sigmoidal transfer function.

o(x) = (3)
l+e

The dynamic-recurrent neural networks are more complex; each node integrates
its mean membrane potential with respect to its previous potential so introducing
internal state - a kind of ‘'memory’. Nodes are governed by the state equation:

d
1Y =y 10+ Y w002, =6) “
0j

where 7;is the time constant of the /™ node, y the output or mean membrane potential
and I(#) the input at time 7. w;; is the weight between node /and node j, o represents the
mean short-term firing frequency of the node jgiven in (3), gis that node's gain and &
its threshold value.

Figure 2.1.1: Perceptron and dynamic-recurrent neural network architectures

The fully interconnected architecture employs a simple genotypic encoding for
fixed size networks. For each node there is a time constant, bias term, gain and also one
weight per node in the net. In all there must be /7 + 3nloci upon the genotype. The
ranges for the time constants, biases, gains and weights are not evolved, being
established by experimentation and literature review (Beer 1996, Husbands 1998). Bias
and weight terms lay in the range [-5, 5] o maximise the utility of the sigmoidal



transfer function. Time constants range between [0.2 and 5] for 'fast thinking' while, in
these experiments, gain was always 1.0.

Full connectivity yields two potential difficulties. First there is an explosive
increase in genotype length for additional nodes. Furthermore, mean membrane potential
increases with connectivity eventually swamping the relative perturbation by sensory
input; full connectivity tends toward rhythmic oscillation. These difficulties are
addressed through the use of spatially distributed sparse network encodings.

Spatial encodings (e.g. Husbands /b/d.) have been employed to great effect and
are generally much simpler than the alternative biologically inspired encodings (Gruau
1995; Eggenberger 1996). Our encoding uses just nine loci per node: three to specify the
time constant, bias and gain and six to generate connectivity. Each neuron is located on a
2D-grid by evolved coordinates. Neurons have a sector of influence specified by a
radius, direction and arc. Any node falling within that compass is counted as an input to
that neuron.

Figure 2.1.2: sparse connectivity
determined by spatial arrangement
and sectors of influence

D w=cos(D +6)

where 6 is the offset or phase

Weights are calculated as the cosine of the absolute distance between nodes
plus an evolved offset. The cosine of the distance yields a weight in the range [-1, 1] for
both inhibitory and excitatory synapses. The size of the spatial array is scaled to some
order of m determining the number of sine wave propagations across the array. With a
single propagation there is a strong bias towards weights within the centre of the range,
some weight sets not being reachable.

Inter-nodal distance of mean position and length on array

Figure 2.1.3: Restricted weight set in single wave case

Moreover, weights become bound o each other as the movement of a node on the array
necessarily affects its entire weight space. Multiple wave propagation alleviates the bias
and allows weight independence because there is always more than one position in a given
weight dimension for any value. A node might move a small amount in respect of one
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neighbour, so changing that weight, but by an order of T in respect of a second
neighbour, leaving that weight unchanged.

N tJ0-0g

N #T0-0$
N 7’

N~ ~- ~7

Weight 1 Weight 1

Figure 2.1.4: In case one the move affects both weights,
in case two, only weight 2 changes

The encoding is parameterised to interpret weight and bias terms in the range [-5, 5],
time [0.2, 5] and gain [1, 1]. Maximum radius is set at some factor of the grid size
(usually 0.5) and the grid scaled by some factor of m (usually 5).

Lm

Figure 2.1.5: Fit spatially encoded neural networks.



2.2 The Agents and their World.

The agent was originally derived from a model of a real-world robot built by the
author. The real agent's large wheels, knobbly tyres and low ratio motors justify many of
the simplifications to the world physics necessary for a fast simulation: it does not
bounce or skid and has imperceptible acceleration and deceleration.

Figure 2.2.1: Wheelie, a robust research platform.

However, since the original simulation has been extended to include ray traced light and
laser ranging sensors additional o the ambient sensors, robot and model have diverged.
The agent has become a circular body equipped with two motors and a variable sensor
array, now resembling a certain traditional model in evolutionary robotics.

Motors are driven by motor neurons with variable and unexpected output ranges
so the motor neuron activations are passed through a sigmoid. Neuronal output was
banded such that:

4-if y>0.6
m= 0-if y<0.60y>0.4 (5)
—4.if y<0.4

The motor values are taken as the speed of each motor and the agent's progress is
derived via a simplified physics from these values.

Of the available implemented sensors only directional light and laser ranging
sensors were used. For laser ranging sensors a single ray is traced over their range and a
normalised value returned: 1.0 for objects close to and 0.0 for objects at the limit of
the range. Light sensors return this normalised range multiplied by the intensity of the
light sighted. The directional light sensors frace rays between the sensor and each light
in the environment. Those rays which are both uninterrupted and within the sensor's
angle of acceptance are summed to refurn the reading.

12



Not summed Summed Not summed

Figure 2.2.2: Fast ray
tracing algorithm.

Two methods of generating sensors were employed. The simple method reads
pre-defined sensor arrays from a file using these to populate a sensor chromosome. The
second generates wholly random chromosomes. In both methods the number and type of
sensors is not evolved. If the sensor chromosome's mutation rate is set to 0.0 then no
sensor evolution will occur, comparable to the traditional evolution of the neural network
weights on a fixed architecture agent. Each sensor is encoded by 3 parameters
specifying its location on the agent's body, its range and direction. Range is interpreted
as the angle of acceptance for directional light sensors.

a ’

\ /
Figure 2.2.3: Sensor chromosome: ‘adradradradr’

The world comprises an infinite fwo dimensional plane featuring a greatly
simplified physics. Forces are not calculated beyond motor speeds, collisions are
inelastic and friction is crude, allowing movement but no skidding. Noise, at variable
levels, is introduced at the sensory-motor interface. Entities include walls, cylinders and
lights with fixed positions. A world is populated with entities from an ASCII description
with a particular fitness test in mind. In order to better explore the strategies
employed by each successful agent a number of worlds are designed for each fitness
test. Niche worlds, in which the evolution takes place, are supported by further worlds
which facilitate analysis of the evolved behaviours.

13
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Figure 2.2.4: Main avoidance and detour worlds.
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Figure 2.2.5: Various support worlds.
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2.3 The Genetic Algorithm.

Evolution is driven by a spatially distributed genetic algorithm (Collins and
Jefferson, 1991). Genomes are distributed upon a square toroidal grid. A genome is
selected at random and a breeding pool is generated from the eight nearest neighbours.
The pool is ranked according to ascending fitness and a partner selected by inverse rank
proportionate roulette wheel selection governed by the equation:

P(a) = % where a[0, 7] 6)

where Pis the probability of selecting the agent ain the list. Offspring are produced
using crossover and mutation operators and placed back in the population by overwriting
one among the less fit of the neighbours, again selected proportionate to rank.

m Selection of fitter agents

@ 11111111
(ﬁ_@) 00000000
C:- Breedmg
k. operators

[}1010101

Beplacement _///

Figure 2.3.1: One iteration of a distributed G.A.

The selection pressure hides a form of elitism in as much as it is not possible for
the fittest agent to be selected for overwriting nor for the least fit fo be selected for
breeding. Further elitism is built in to the

algor‘ifhm and utilised 'rhr‘ough flags in the 2000 Selection pressure in '8 nearest Neighbours'
program. The algorithm always prepares

both possible offspring (one being the b ~
'negative’ of the other). If the ‘elite-child’ 2000

flag is set then the fitter of the two
children is returned to the population,
otherwise one is returned at random. If the 1000
offspring is less fit than the target
selected for overwriting a further flag,

w
=1500
I

500+

‘elite-replace’, determines whether the B ———
offspring will in-fact overwrite the Selecticn
neighbour or be discarded. Figure 2.3.2: Selection pressure.

A genome comprises of three chromosomes - one for the control architecture
and two for sensor profiles. Chromosomes are strings of real numbers in the range [0, 1]
to double precision (64bit). The chromosomal model supports multiple operator sets
allowing different rates and styles of genetic operation on different parts of the agent.
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For example the controller might be evolved with a fixed sensor profile and then the
sensors evolved at a slower rate once capable sub species have emerged in the
population. Agents are derived from their genomes through the encodings discussed
above and specified on initialisation. The encodings scale the genetic range [0, 1] fo the
appropriate phenotypic ranges and establish the fixed elements of the experiment.

Uniform crossover was used in all trials. Two parental genomes are crossed into
two children with an equal chance that each loci on parent A will end up in either child.

e G Tl s o | 10110010
Qo0DoO000 01001101
parents offspring

Figure 2.3.3: Uniform crossover.

In this way both variant offspring are produced with no bias as to which parent was
selected first. As stated above, the choice of return offspring is determined through
flags and ranges from a purely random return to the return of fitter agents only.

Three mutation operators were available including Gaussian point mutation,
stepped Gaussian mutation and vector mutation. The first operator merely returns a
random number from a Gaussian distribution centred on the loci value with a standard
deviation of 0.2. Stepped Gaussian mutation is a composite of two operators found in
Husbands (1998); a small Gaussian variation is returned with a probability of A(0.8) and
a non Gaussian random number in the range [0, 1] otherwise. Point mutations were
employed at a rate of approximately 1 mutation per genome. Vector mutation is a
variation of the technique reported in Beer (1996). The vector length of a chromosome
is varied by some small amount from a Gaussian distribution about the length. This
change is then distributed among the component reals. Network chromosomes were
mutated with a mean distance between 1 and 3 in various trials. All three mutation
operators were used but the vast majority of trials used vector mutation for the
network parameters and stepped Gaussian point mutation for the sensors. Legal bounds
were maintained by capping and collaring.

One generation of a distributed grid algorithm is approximately # iterations, n
being the size of the population. Each genome in the population is evaluated on
initialisation. The problem of dominant ‘lucky’ agents is addressed in the testing regime.
Each agent is evaluated repeatedly, between 6 and 10 trials, from random starting
positions and orientations within their world. Each evaluation score is ranked inversely
proportional to fitness and overall fitness calculated as the weighted mean such that:

n=evaluations

®= >nf, (7)

n=0
where & is the recorded fitness and 7, is the fitness score of the 7’ evaluation. An
agent must score consistently well across all evaluations for a good overall fitness score
under such a weighting regime.
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2.4 The Experiment.

The investigation involved exploring the effect of domains of plasticity on the
evolvability of detour and avoidance behaviours. The project allowed for variation across
2 domains of plasticity:

1. Controller architectures:
» Perceptron network.
« Fully interconnected dynamic-recurrent network.
»  Sparsely connected dynamic-recurrent network.
2. Sensor morphology:
« Seeded sensor profiles.
* Non-seeded sensor profiles.

Plasticity was varied from trial to trial across one or more of the available domains
generating statistical data for analysis. Data produced was examined for signs of
increased evolvability.

Preliminary experiments into avoidance behaviour were trialled in a world based
on Floreano's experiments into object
avoidance using real Khepera robots
(Floreano and Mondada 1994). The world
encourages both left and right turns and
should be narrow enough to cause some
sensor stimulation at all fimes. Floreano
introduced a fitness function based on
rewarding desirable component parts of
the behaviour, which was initially
adopted: Figure 2.4.1: Floreano-world.

n=steps

o= > v,.(1-dv,)(1-1,) (8)

where @ is fitness, vis the absolute distance moved, dv the normalised absolute rate of
turn and I the highest distance-sensor reading.

Detour behaviour was initially inspired by
toad and frog detour experiments (Arbib
1987).The detour worlds are designed such
that the agent begins facing a fence of
cylinders and a bright lamp. The agent is
expected to move towards the lamp, while
e detouring the fence as necessary. A

O component based fitness function was once
SRe) again employed, this time rewarding lamp
approach behaviour and straight line
motion. Hard lessons were learned during
avoidance trails; the detour fitness test
Figure 2.4.2: Barrier-world resembles the avoidance test but differs in
key ways:

17



n=steps

®= >l 9)
n=0

where @ is fitness and vand /are calculated:

4 if both motors full forwards

600 ~ |d| , ,
[=—— v= 1 if one motor forwards, one stationary

150
0 otherwise, (full turn and reverse cases)

dbeing the agent's distance from the source. The vterm causes both straight line
motion and implicit object avoidance while the /term causes phototropism. With its
discontinuous sensor readings and dual nature, detour behaviour is a considerably more
complex task.

In each of these problem domains, trials were run using different network
architectures. For each architecture three sensor regimes were tested: fixed, seeded
and fully evolved. The fixed array was designed having observed this class of agent
performing object avoidance. It was decided to permit two forward pointing sensors at
the agent's girth to allow the detection of sizeable gaps and two angled forward pointing
sensors emanating from the agent's front to allow collision detection. This array was
trialled against comparable arrays and adopted as standard for offering a balance
between too little and too much information. Other possible sensor arrays would be
searched in those parts of the experiment in which sensor arrays were to be evolved;
more will be said about this later.

2.4.3: Adopted patterns of fixed and seeded sensor arrays.

The same array was used to seed sensor evolution, optimisation being carried out
through mutation whilst fully evolved sensor arrays began with random chromosomes.
The detour behaviour utilised the modification to the right incorporating 2 forward
pointing directional light sensors with an angle of acceptance of n/3.

18



3 Results:

In all this made for 15 experiments involving repeated evolutionary runs in each
class for generality. For each experiment we will describe the evolutionary statistics and
results of the run before discussing the evolved behaviours. In the following section,
analysis, we will bring all the data and comments together for reflection.

Appropriate mutation for each trial was established through a number of short
dry runs. In each run the genetic variance of the population was estimated by examining
the mean and standard deviation of each locus upon each genome. For a random
population the loci average should approximate 0.5 and the standard deviation 0.27. As a
particular locus in the population tends to converge the locus' mean will change and the
standard deviation decrease. Variation across the whole population can be measured with
the mean standard deviation per locus. Although the mean mean per locus should still
approximate 0.5, the mean standard deviation will be minimised in a converged
population. Mutation rates were selected to slow down the convergence driven by the
selection pressure.

Establishing mutation rates from genetic convergence. Establishing mutation rates

0.45
0.4
0.35- ~ - — - M=3.0
0.3

0.25

Fitness
(=)

0.2

Mean Standard deviation

0.15
0.1

0.05

0 5 10 15 20 25 0 5 10 15 20 25
Generations Generations

Figure 3.0.1: M = 0.1 shows rapid convergence while M = 3.0 shows disrupted convergence tending
towards random search. At M = 0.5 sufficient variation is maintained around the genome values to
facilitate the search amongst available neutral space on the fitness landscape. Convergence continues
at a much slower rate. Mutation rates around 0.5 show better increase in mean fitness than those
higher rates of mutation.

3.1 Avoidance in Feed-forward networks.

The baseline experiment adopted a fixed and non-evolving sensor profile with
four distance sensors. Feed-forward networks quickly evolved to perform this task with
competence. Evolved populations were then observed on repeated runs both in the niche
world and in the support worlds mentioned above. Agents capable of whole circuits
emerged as early as generation 7. Best agents generally accrued fitness around 3.5 and
populations had converged by generation 100.

19
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Figure 3.1.1: Fixed sensor feed forward network statistics.

Figure 3.1.1 graphs the standard evolutionary statistics for the fixed sensor
feed-forward trial. The solid line graphs the best fitness while the dotted line graphs
the population’'s mean fitness. The dashed lines mark the population’s standard deviation
around the mean. This convention is adopted throughout the project.

Agents adopt a strategy which attempts to roughly equalise the readings from
their sensors, so keeping the agent centred in the corridor as far as possible. In one
variant the resting state of the vehicle is stationary; when the sensors are not
perturbed by obstacles the agent does not move.

Figure 3.1.2: A typical avoidance trial.

In another variant the agent progresses in a straight line until perturbed, when it
swerves. These basic strategies have become known as static and mobile avoiders. A
third common strategy involves wall following. Here the agent moves with a slight left or
right handedness. Once this slow turning brings the outermost sensor into contact with
a wall there is a slight turn in the other direction. This oscillating between the handed

20



turning and the sensor driven avoidance leads to wall following; the agent literally feels
its way along the obstacle in question.

Figure 3.1.3: Wall following uncovered in a support world.

Wall followers too can have a static or dynamic resting state although the static state is
characterised by tight circling rather than stillness. This attractor is far less common
because the practice of driving forwards with a very slight turn maximises the first
term of the fitness function much better than turning and driving forwards on
perturbation.

All successful strategies show a handedness; agents would rather circuit the
course either clockwise or anti-clockwise. Some agents find themselves pointing in the
wrong direction at the start and U-turn at the first unfamiliar corner before continuing
as nhormal. Due to the nature of the two corners in the niche-world, agents are evolved
left-handed (anti-clockwise orbits as watched from above) about eight times as often as
they are right handed.
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Diagram 3.1.4: Mean fitness per generation along with the standard deviation and best agent’s fitness
for populations evolved with seeded sensor profiles.

Competent agents (making at least one whole circuit) emerge by generation 7. In
generation 20 all three strategies are active within the population. By generation 100
avoider strategies have dominated the gene-pool.
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It was immediately clear from observed agents that although the same three
basic attractors in behaviour space existed there was a tendency to rationalise the
sensor profiles through grouping and shortening.

Figure 3.1.5: Sensor rationalisation in evolved sensors.

When grouped, a single agent-environment juxtaposition will minimise several sensors
simultaneously. Underpinning shrinkage is the return value of a distance sensor which
ranges between 1.0 and 0.0 inversely proportional to the sensor's length. Minimising the
sensor’s length has the effect of minimising the sensors average reading per average
distance in a given environment.

The same general trend was uncovered in the third experiment with fully evolved
sensors. Once again task success was quickly achieved but fitness this time far
exceeded the previous experiments. The trend was to develop sensor profiles like
bristles with perhaps one or two longer distance sensors to facilitate following
behaviour. Pure evolution took rationalisation fo a further extreme for not having the
seeded array to modify through mutation alone. In this way much shorter sensors were
selected for so the sensor penalty was drastically minimised.
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Figure 3.1.6: Avoidance with fully evolved sensor profiles.

Pure evolutionary runs also uncovered a third form of rationalisation. The angle
of the sensor becomes extremely acute, essentially laying the sensor along the side of
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the agent's body. This way a longer sensor would still be perturbed considerably less
often than if it were pointed out into the world. The advantage of this is that any
perturbation of the sensor can be considered significant to navigation, no threshold is
involved. The sensor has become less of a distance sensor and more of a bumper, its
reading not a linear measure of distance but rather a Boolean measure of collision.

The shortening of sensor lengths also permitted the development of new
strategies: turning almost on the spot and pacing up and down a short length of corridor.
This arose because the minimal sensors meant that circling strategies now scored
reasonably well despite the associated turning penalty, turning loses were made up for
by sensor minimisation.

The graphs of typical evolutionary runs shown above would appear to support the
notion that increased plasticity increases evolvability. The maximum fitness of a fully
evolved agent is more than four times that of partially evolved agent and this greater
fitness is reached in a similar timescale. A further attractor in behaviour space was also
enabled, even if this attractor was not a good solution. The extra plasticity allowed the
rationalisation of the sensor array favouring smaller sensors covering a smaller area.
Such clear results might be interpreted to support the hypothesis; there remains one
important consideration.

Sensor rationalisation should properly be considered an artefact of the fitness
test:

®=>vd-m.A-1) (from 8 above)

where the third term requires that the agent minimise its highest distance-sensor
reading. Sensor readings can be minimised by avoiding obstacles or by adjusting the
sensor profiles through grouping and shortening, so evading the task in hand. There is an
element of this rationalisation pertinent to the enquiry; the overall mean fitness of a
population is greatly increased by ceding evolutionary control to the sensors. It follows
that the given sensor array sets hard limits about what it was possible to achieve under
evaluation.

Such explicit elements in the fitness function can be problematic (indeed, in this
case are problematic). With this in mind the experiments were re-run, agents being
evaluated according to:

®=>v(-dv) (11)

where @ is fitness, v velocity and dvnormalised rate of turn as before. Here object
avoidance is implicit in the vterm. The second set of experiments demonstrated the
same four basic behavioural attractors and robust evolution over a similar time scale.
Graphs of typical fitness after 100 generations are shown in figure 3.1.7 overleaf.
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3.1.7: Evolution of avoidance with fixed and seeded sensor profiles.
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3.1.8: Evolution with fully evolved sensors with sample behaviour.

The highest mean fitness is found in the run without sensor evolution (mean = 10.1968,
best = 11.3388) whereas the fittest agent was found using full sensor evolution (mean =
9.7300, best = 12.4443). The populations with seeded sensor arrays did consistently
worse than the others. This might suggest that certain sensor combinations do indeed
facilitate certain healthier strategies but that the landscape around these fitter
attractors is rough terrain. Sensor sets which are near-by in trait space perform less
well, making mutation around a well designed sensor set less fruitful. When full control
of the sensors is ceded to evolution more distant sensor sets can be evaluated leading to
increased performance.

Although mean best fitness was considerably higher in these trials, a
significantly higher number of populations converged on the circling and bouncing
strategies mentioned above. These dominated early in a population leading to
inappropriate convergence.

The statistical probability of an agent adopting one of the strategies was
estimated by counting the numbers of strategies found in each run after 100
generations. In the feed forward case 4 classes of strategy were counted: avoiding,
following, looping and ‘other’. These statistics also suggest that the best results come
from either no sensor evolution or full sensor evolution, more poor-scoring looping agents
are found in the constrained case.
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3.1.9: Distribution of behaviours over 3 evolved populations.
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3.2 Avoidance in Dynamic-recurrent networks.

The second set of experiments involved trialling fully interconnected dynamic-
recurrent networks with the same three sensor regimes. This class of network brings
internal state into the equation allowing temporally extended behaviours to emerge. It
also involves far more loci per genotype so increasing the dimensionality of the search

space.
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Figure 3.2.1: Typical statistics for evolutionary runs with fixed and seeded sensor arrays.

Once again populations quickly showed competent behaviour although the best
individuals in each case were not as strong as the best feed-forward networks.
Observed agents showed a tendency to react rather late to sensory perturbation and
suffered far higher numbers of collisions on their way round.

New attractors or behavioural traits were also found. In populations with fixed
sensor profiles many agents adopted a ‘three-point-turn’ cornering strategy which
involved a short reverse before adjusting the heading.

Three point turn.

Figure 3.2.2: Example reversing behaviour.

A second less useful trait developed from the temporal capacities of the dynamic-
recurrent network. Agents would collide with an obstacle and pause for a while before
turning sharply away and continuing. The pause is only observational; on the inside the
agent slowly decreases membrane potential in the motor neurons until the forward
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moment stops and then reverses. The apparent pause is a feature of the banded motor
profile. This pausing is symptomatic of 'slow-thinking' in the networks; sensor
perturbation takes a few steps to have a significant effect on the network activation as
a whole. Neuronal time constants were evolved within a range that should allow faster
thinking and indeed other agents did think and react more swiftly. It seems strange to
find such suboptimal traits present although they may well have been evolved out of the
population over longer time spans.

In the case of fully evolved sensor profiles the difficulty of inappropriate
attractors or behavioural traits was more acute. Graphing the evolutionary statistics for
a typical run shows slower convergence
but eventually finds a much higher best
and mean fitness. Yet very many more of
these populations converged on
inappropriate strategies. This result
points to the interesting notion that the

18;
16}
14t
12}
10t

2
2 8 . . . .
it desired sort of behaviour is sub-optimal
6 . . . .
, , in this fitness landscape. The fittest
4t 7 Dynamic recurrent network,
Evolved sensor profile. agents seen to date score around 16.00
2F . . . .
paed and score such through rapid oscillations
0~ . : .
essentially leading to bouncing along the
0 10 20 30 49 S0 60 70 80 90 100 corridor. Most of these agents do not
enerations

perform circuits and spend their time
going forwards and backwards, scoring optimally for straight line travel. Some do bias
their bouncing towards circuiting the course although this is rare. The oscillations are an
extreme form of the circling strategy flagged above. In each case the small loss of
fitness involved in the corners, ricochets and bounces is not enough to prevent
dominance. These strategies are intrinsically more straightforward to develop because
they involve less precise tuning of sensory motor invariants and have less ‘'respect’ for
their environment. They score well early and begin to dominate the gene pool.

Figure 3.2.4: Inappropriate strategies which dominate the gene pool quickly.

Sensor evolution showed the same tendency as in the feed forward networks
with wall followers tending towards a side pointing sensor and avoiders tending fowards
forward pointing sensors at their extremes. Additionally, dynamic-recurrent agents
evolved sensor arrays where one or more sensor had been so far turned towards the
agent that they were effectively turned inwards and reporting closest contact at all
times. This constant signal was ignored or used as a steady reference signal. The overall
effect of this is the same tendency to simplify the problem space as was found in the
original trials involving sensor rationalisation.
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Figure 3.2.5: Sensor rationalisation.

It would seem that evolution is selecting for bare minimum sensor arrangements to keep
the complexity of the resulting dynamical system behaviour down. Although
parameterising a sensor like this makes no difference to the genotypic search space,
there is a simplification in the resulting dynamic system in behaviour space. Fewer
variables varying in that state space make for more simple trajectories and simplified
behaviour.

It was much harder to estimate behavioural probabilities in the dynamic-
recurrent case as there would almost always be a surprise somewhere in each population
examined - the range of possible behaviours is vast.
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Figure 3.2.6: Distribution of behaviours over 3 evolved populations.

Reversing behaviour was always associated with avoidance strategies. It is remarkable to
note how little wall following behaviour evolved in these trials and how well the fixed
architecture DRNN does. The probabilities reflect the increased dominance of looping
and bouncing in full evolutionary runs.
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3.3 Avoidance in Sparse networks.

As mentioned above, it was suspected during planning that the dynamic-
recurrent network would tend towards rhythmic oscillation as the node count and so
connectivity increased. The third set of .
avoidance experiments involved sparsely Sparse network,
connected dynamic-recurrent networks. M1 Fixed sensor profie.
Typical statistics once again show
successful evolution of agents in all
three scenarios. In the case of fixed
sensor profiles evolution begins more
slowly as a network with dynamics
appropriate to the sensor profile must
be found. Once found optimisation
achieves the usual strong result. Agents 24 30 3 4 5 60 70 8 50 o0
of both wall following and avoidance Generations
behaviours were found in the resulting populations.

Fitness

Evolution of a seeded sensor profile was

9 faster to get started. The need for
T et sonser profie. sensors and networks to be in some kind
121 of agreement still holds but sensor

mutation speeds the time to integration,
the network and sensor profile meeting
half way. Seeded sensor profiles evolve
more quickly but generally score less
well. Too often one of the inappropriate
attractors dominates the gene pool
before anything interesting can happen.

Fitness

0 1b 2‘0 ?;0 4‘0 50 6‘0 7‘0 éO éO 160
Generations
Fully evolved sensor profiles
showed slower evolution again. At
. . Sparse network,
cessation pOpUlGTIOhS showed 141 Evolved sensor profile.
competence but had not converged as 12}
much as seeded and fixed sensor
populations. Running the algorithm for
longer periods showed the same
overall fitness achieved. Sensor
profiles showed the same vague
pattern found above with agents
evolving a sensor for wall following or
sensors for look-ahead. The increasing S S S
. . . 0 10 20 30 40 50 60 70 80 90 100
number of inappropriate strategies Generations
encourages the development of rather
random sensor profiles.

161

Fitness

Amongst the fittest of the fully evolved sparsely connected agents were those
who showed the least handed-ness in their turning preferences. As was already
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mentioned almost all agents adopted a handedness governed by the turns in their world.
Diagram 3.3.3 shows a brain in which forms of symmetry and structural modularity have
emerged.

Figure 3.3.4: The birth of symmetry.

The agent using this brain was able to circuit in both directions most of the time. It
must be said that these graphical interpretations of the network appear more
symmetrical than the associated weight sets suggest.

Again estimation of the behavioural probabilities was difficult, the dynamic
nature of the networks making behaviour difficult to qualify at times. The same basic
categories were adopted as in previous cases.

0.4 - Fixed

' eeded

0.35 - H Evolved
s %
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Figure 3.3.5: Distribution of behaviours over 3 evolved populations.

These probabilities reflect the greater variety of behaviours found in the dynamic
networks. The distributions once again suggest either full or no sensor evolution is
preferable to seeded sensor evolution.
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Having examined a simple case the same set of variations were fo be tested
while attempting o evolve detour behaviour; sparse and fully interconnected dynamic-
recurrent nets were to be used, trialled with and without sensor array evolution.

A two step approach was adopted where agents would be evolved for general
phototropism in a cluttered environment. Competent agents could then be transferred to
the niche world for further optimisation.
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Figure 3.0.3: two steps to detour behaviour.

Mutation levels were established as before by examining the mean standard deviation
per loci per genome. Due to the increased complexity of the task space and increased
dimensionality of the search space graphs of mean standard deviation are less clear. It
takes longer for the algorithm to find a solution with greater than latent ability, once
found such a solution rapidly dominates. Figure 3.0.3 shows mean standard deviation and
fitness for mutation rates between 0.05 and 1.

0.5¢
0.45r Determining mutation in BarrierWorld.
0.4r
0.35f
0.3f

0.251

Fitness

0.2r
0.151

Mean standard deviation

0.17
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% 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Generations Generations

Figure 3.0.4: Establishing good mutation rates.

An initial rate of 0.75 was selected for these trials giving a balance between
convergence and high fitness.

The fixed sensor array was the same as that used above with the addition of two
forward pointing directional light sensors with an angle of acceptance of m/3 radians.
Six sensors require a minimum of 8 fully connected nodes yielding a chromosome length
of 88.
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3.4 Detour in Dynamic-recurrent Networks.

The following figures graph evolutionary statistics for fixed, seeded and evolved
sensor profiles in typical evolutionary runs along with typical strategies evolved.
Interesting agents evolved in all cases.
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Figure 3.4.1: Evolution of detour with fixed sensors in cylinder-world.

In the case of fixed sensor profiles agents evolved to roam around their
environment avoiding the cylinders with great success. Unfortunately, as the diagram
shows, the majority of agents had no significant phototropic response.
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Figure 3.4.2: Evolution of detour with seeded sensors in cylinder-world.

Significantly, some populations with seeded sensor profiles converged on
phototropism without object avoidance. Such populations scored poorer overall fitness
to match the rather hit or miss nature of their strategy. I+ would seem, given the dual
nature of the fitness test, that there are local optima representing both tropism and
avoidance behaviours. We are looking for tropism optima situated on top of an avoidance

optimum.

Such a fortunate juxtaposition was found in the case of agents with fully evolved
sensor profiles. In these populations, agents evolved to place their eyes in both
forwards and backwards positions. This increases the scope of the agents’ vision and so
must increase the profitability of attempting phototropism as well as object avoidance.
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Figure 3.4.3: Successful agents showed
remarkable ability across all the trial
worlds in which they were tested. The
figure on the left shows the agent
escaping from a constrained enclosure in a
fence world and successfully finding the
light. It is worth mentioning that although
these agents are winners in all fitness
tests they are so for the wrong reasons.
The great fitness breakthrough comes
from evolving a rearward pointing eye.
This allows the agent to see when it is
going the ‘wrong’ way and turn around. A combination of rushing blindly in the forwards
direction with good object avoidance and the ability to turn having gone too far makes
for a very successful agent. The path in the cluttered world shows the agent hunting
around with a bias towards the light; this is oo chaotic for detour behaviour.
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These agents were destined to be further evolved in the target niche world to
perfect their combined behaviour. Unfortunately, the nature of part evolved solutions
made this a frustrating and ultimately unhelpful practice. In the case of the earlier
populations which had evolved towards either tropism or avoidance optima further
evolution created a mess. Agents had their accumulated fitness scores zeroed for the
new trials and being largely optimised for either avoidance or tropism they faired very
poorly. The generally bad fithess scores led to chaotic breeding and the overall
capabilities of the populations fell even when returned to their original world. The fully
evolved populations that had succeeded in the cluttered world also triumphed in the
fenced worlds, with no net change in behaviour for the change in environment. Although
these agents solved the problem they did not detour according to the previous strict
definition.

Given that the incremental approach had failed, agents were evolved directly in
the niche world under the same fitness test. Once again the usual three variations in
sensor morphology were trialled; statistics for each evolutionary run are given along with
sample evolved behaviours.
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Figure 3.4.4: Evolution of detour behaviour with a fixed sensor profile.
80,
70r

Fully interconnected DRNN
Fixed sensor profile.
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The most common behaviour found in these trials was a form of looping behaviour. The
agent circles, maintaining a certain distance between themselves and any obstacles, if
the light sensors become stimulated the agent travels forwards. This way the agents can
locate a light and progress towards it, any obstacles initiate the distorted looping which
causes the agent to roll around them before relocating the light and continuing. This
sort of ultra-efficient looping strategy is often found in evolutionary robotics and was a
design feature of the earliest biologically inspired robots: Grey-Walter's Elmer and Elsie
(6rey-Walter 1950)
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Figure 3.4.5: Looping strategies.

Seeding and evolving the sensor profiles led to very much more variable
evolutionary runs. The fittest agent was evolved in this class with a sccore over 86, at
the same time many runs ended with
Fuly intercomnected DRNN converged populations scoring as little as
Seeded sensor profie. 55. The fittest agent employed one of the
aforementioned looping strategies coupled
with sensors funed to strong left-handed
ness. Handedness was as common amongst
these agents as in previous experiments
and, as was found in previous experiments,
, left handedness was far more common.
Unlike the previous experiment there is no
0 20 40 6 & 100 120 140 160 180 200 environmental bias to account for this and

Generations
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so no straight forward explanation. A second very sucesfull strategy employed this
handedness in wall following. Thus, when the obstacle was detected, the agent would
follow its perimeter untill the light once again took over navigation.

3.4.7: A strong left handed
agent and successful wall
following detour behaviour.

Full evolution of the sensor array led to a very similar set of results with variable best
fitness across numerous runs. Agents generally adopted the same looping strategies with
varying degrees of success. The more elegant wall following solutions were less often
found in fully evolved trials.

- l Fully interconnected DRNN
20+ {,.«"/,’ Evolved sensor profile.

10 ?:
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Figure 3.4.8: Detour evolution with fully a evolved sensor profile and a sample agent.

Although the looping behaviour and the slightly more refined wall following pictured here
are undoubtably high scoring and consistently successful strategies it is not clear that
they would be accepted as detour behaviour. A full analysis of these agents and their
behaviours follows in the next section.
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3.5 Detour in Sparse networks.

In this final set of experiments the same sets of sensor arrays were trialled
with sparsely connected dynamic-recurrent networks. Once again a two step approach
had been envisaged and agents were begun in the cluttered environment. Figure 3.5.1,
below, graphs the evolutionary statistics for typical runs in this series.
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Figure 3.5.1: Evolutionary statistics for detour in sparse networks with fixed, seeded and fully

evolved sensor profiles along with a sample path through cylinder world.

Performance of the sparse network encodings was once again poorer than the
fully interconnected encoding across all trials. Populations tended to evolve either
avoidance or tropism as was previously uncovered, the probability of avoidance behaviour
being very high. In the case of populations sporting fully evolved sensors the overall
performance was significantly slower with many populations not evolving either behaviour
to a capable minimum within the usual time span. Populations evolved for longer fared
much better and it was within fully evolved populations that the first signs of a more
integrated behaviour were found.

The incremental evolution of such poor behaviours met with the same bad results
as the previous attempt. Populations did not hone allready present skills, zeroing of their
fitness for the new world led to chaotic breeding and resultingly lower fitness means.

The final experiment involved sparsely connected networks evolved directly in
the barrier detour world, evolutionary statistics being graphed in figure 3.5.2 below.
The same pattern emerged once more with fastest convergence in the seeded
populations and much slower evolution in both fixed and fully evolved populations. The
dominant strategies involved looping and wall following as found in previous generations
with sensor profiles tending towards supporting the handedness found in the behaviour.
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Figure 3.5.2: Typical evolutionary statistics for detour in sparse networks with fixed, seeded and fully

evolved sensor profiles along with the best seeded agent’s path through barrier world.

Agents from these populations scored considerably lower mean and best fitness. The
mean is partially explained by the slower evolutionary progress found in all runs involving
sparse networks. Despite the capable run shown above, the best agents in these runs
were only capable of good behaviour in less than half of their trials. Success depended
as much upon fortuitous starting conditions as real ability. Once semi-capable agents had
emerged they quickly dominated the gene-pool as the graphs suggest.
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Figure 3.5.3: One of the better sparse network populations
Even in this longer run the population shows convergence gy generation 200.
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4 Analysis:

Data gathered from the 15 experiments is grouped into a number of more
digestible strata; there were avoidance and detour fitness fests, each involving classes
of network trialled with different sensor profiles. Questions will be asked of the data
on two levels: the ease and speed of evolution can be explored at the population level
with evolutionary statistics, while the appearance of new and more complex behaviours
must be sought amongst populations at the level of individual agents.

4.1 Evolution of Avoidance Behaviour.

The mean, standard deviation, best and worst individual fitness scores were
recorded for each generation of the evolutionary runs. When combined with ‘field notes’
attached to each of the runs during observation and analysis the following observations
were made.

« Sensor evolution:
1. The highest mean fitness was consistently found with fixed sensor
profiles.
2. The highest individual fithess was consistently found amongst evolved-
sensor agents.
3. Seeded populations converged more quickly upon poorer strategies,
scoring least well across all trials.
4. Evolved-sensor populations were slowest to evolve.
*  Network Morphology:
1. The most reliable evolution was consistently found in feed forward
populations.
2. The most complex behaviours evolved in sparse networks.

The extent to which these propositions support the hypothesis is unclear. We
would argue that additional domains of plasticity do indeed increase the explorative
potential of evolution but that this comes at a cost - the search is more difficult, the
results more unreliable. Critical to explaining these results is the realisation that the
control architecture and the sensor profile are involved in a reciprocal co-evolutionary
dance. Ideally each slowly enables the others best expression but this first requires
that these two domains fall into step. In the genetic algorithm both have individual
crossover and mutation operators separately parameterised. This can make for a fragile
coupling.

In the case of controller evolution with a fixed sensor array there is no co-
evolutionary dynamic. Evolution progresses to search out and optimise the best possible
strategy under the given circumstances. In such a traditional run sensors and motors are
effectively part of the environment of the controller; the agent as a whole does not
evolve. Good behaviours emerge straightaway and the populations tend towards
convergence.

Populations with fully evolved sensors develop more slowly. In part this is
because the dimensionality of the search space is increased and in part the co-
evolutionary dynamic requires that the controller and the sensor array become
structurally synchronised. The additional dimensionality of sensor evolution means there
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are many more possible combinations to search before a reasonable combination is
found.

Once bootstrapped, the fully evolving populations achieve the highest fitness
scores. Best agents are able to utilise sensor evolution in developing better strategies.
It has been argued (Conrad 1990, Bongard and Paul 2001) that additional morphological
parameters can enable an extradimensional bypass between distal fitness peaks within a
complex landscape. Such a bypass permits a population o migrate across an otherwise
impassable valley in one dimension by following a ridge in another dimension, in this case
provided through sensor space. It would be tempting to believe that is what enables the
consistently higher fitness in fully evolved populations but this should await further
exploration.

Seeded populations did not fare as well as either fixed or fully evolved
populations with a tendency to converge more quickly upon less fit strategies. We
suggest that the sensor morphology landscape is hilly with many possible sensor
combinations proving viable. When these hills are woven into the controller landscape, as
co-evolution surely does, it makes for profitable search along many more lines. The co-
evolved fitness landscape now has many more basins of attraction leading to more
behavioural trajectories. It would appear from the statistics that many of these
additional attractors are less than optimal. Further, it would explain the observed
poverty of the seeded case if good attractors are surrounded by poor attractors. This
would make the seeded case doubly disadvantaged: it would have the slower start of a
co-evolutionary run combined with a constrained search in sensor space.

Statistics derived from counting attractors are insufficient to support such
grand claims although they do add further support to the observations. Only an
exhaustive search of the 75 dimensional fitness landscape could determine such detail.
Limited frials were made using fit controllers from fixed profile experiments with
sensor-only evolution. Net gain in fitness after a further 100 generations of seeded
sensor evolution was less that 1%, a figure best accounted for by noise. If there were
better peaks in sensor space nearby this exploration should have found them.

Varying the network architecture followed interpretably similar lines. The
increasing complexity of the search space which comes with increasing plasticity slows
the evolutionary process. Fastest evolution of the most robust agents occurs in the
simplest populations. However, most interesting behaviour and fitter agents emerge
from populations with greater plasticity. The best agents, with least handedness and
most efficient lines evolved in sparsely interconnected networks. Once again the
additional plasticity increased the number of possible solutions which in turn further
hindered evolutionary progress; there was faster convergence on poorer strategies. A
poor strategy only has to be a little better that the latent potential of a random
population to dominate in a co-evolutionary dynamic because of the additional time
required for good co-evolutionary partners to get into step.

At the behavioural level, increasing network plasticity did enable the larger
range of possible strategies with such additions as reversing or delayed reactions. As
has already been suggested, this increase in attractors in behaviour space makes for
less robust evolution with many more populations converging on poor strategies. Yet
amongst these many local maxima lie the best agents with some really superb strategies.
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Increased sensor plasticity was utilised more creatively by the evolutionary
process. In both sets of avoidance trials sensor rationalisation was found with sensors
being turned inwards and sparse nets evolving with many sensor neurons disconnected.
This demonstrates a tendency for evolution to
simplify the situation as far as possible. A similar
result was seen in Balakrishnan and Honavar's { v
work with Teller's box pushing task (Balakrishnan >B
and Honavar 1995, Teller 1994). Fully evolved e
agents reduced their sensors from eight to as @
few as three with no loss of fitness. Husbands et .
al. found a similar frend towards very simple

* .

visual systems, even where no direct selection .. 1
pressure is applied (Husbands et a/. 1996, 9 . G
Husbands 1998). We suggest an implicit pressure

exists to keep the system dynamics as simple,

and therefore stable, as possible. Figure 4.1.1: Sensor dissociation.

At the co-evolutionary level sensors were seen to migrate to support the
'handed’ bias found amongst all agents. Similar coherent sensor profiles were seen
amongst wall followers and avoiders.

Figure 4.1.2: Wall following, avoiding and handed sensor profiles.

It is not clear that the pictures above represent anything more significant than a bias in
the observer for recognisable fraits, as many strange and innovative sensor profiles also
emerged.

Figure 4.1.2: Less obvious sensor profiles.
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4.2 Evolution of Detour Behaviour.

The more complex task environment led o more complex results - less clear in
intferpretation, less general in their scope. Following the pattern of the previous analysis,
statistics and observations suggested:

« Sensor evolution:
1. The highest mean fitness and best individual was consistently found with
seeded sensor populations.
2. Evolved-sensor populations were slowest to evolve and obtained the
poorest best fitness and mean fitness.
3. Evolved-sensor populations converged more quickly upon poorer
strategies.
* Network Morphology:
1. The most reliable evolution and best results occurred with fully
interconnected dynamic-recurrent networks.

At least in a first pass these results do not tally with those of the previous
experiment. Here seeded populations excel over fixed, and simple networks over the
complex; only the evolution of fully evolved populations remains as it was: slow and
unreliable.

It is likely that the fully interconnected networks evolve more quickly than the
sparse networks simply because the space of possible networks is skewed. Sparse and
full connection regimes contain the same number of possible networks but the sparse
case has a great bias towards zero weighted links. The potential of having insufficient
connection or critical disconnection (of a motor) is higher yielding an increase in volume
of dysfunctional networks to be explored and disregarded. Hence the increased co-
evolutionary synchronisation delay in this case; evolution is markedly slower to get
started. This much is in agreement with previous results.

It was certainly possible that the features of the sparse encoding used such as
the sinusoidal weight generation were innovations unsuitable to evolution. To test this,
two other encodings, including one based directly on the two sector technique employed
in Husbands (1998), were trialled. Similarly poor results were had in all cases. The
sparse encodings, although considered a possible domain of plasticity in respect of
network architecture, were partly inspired by the possibility of excess oscillation in the
fully interconnected networks. Yet the fully interconnected networks behaved very well.

We suspect that the unusual success of the seeded populations has a simple
explanation. In the avoidance trials the seeded array happened to prove among the
better of its neighbours. Search around the seed did not show up better arrangements
nearby. For detour experiments the seeded profile was not so good. Both the light and
distance detectors were forward pointing whilst successful agents always evolved a
sideways slant. If the natural affordances of the fixed array was higher in avoidance
than in detour trials these results would be expected.

Once again the additional plasticity enabled more attractors in behaviour space.
It was not possible to divine what behavioural differences were grounded in
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architectural plasticity; the behaviour of dynamic neurons in these numbers is often too
complex and behaviours did not emerge in sparse networks worthy of detailed analysis.

The evolution of sensors made a much clearer contribution to possible
strategies. The best examples of this were seen in the cluttered environment
experiments where the best agents evolved rearward vision. It was a feature of this
world that heading away from the light was far more likely than heading towards it, most
paths leading away from the centre of the space. Good agents evolved eyes in their
backs or wide angled vision to cope with this. Without sensor evolution phototropism was
largely futile, agents evolved single modality behaviours, avoidance accruing by far the
greatest fitness and so evolving most often. The case of the evolution of rearward
pointing vision is better evidence for the utilisation of extradimensional bypasses. The
higher fitness peak enabled by the evolved sensor profile could not have been attained
without sensor evolution.

4.3 Domains of Plasticity and Evolvability.

The original hypothesis: that additional domains of plasticity increase
evolvability, has not been clearly supported by the experimental data. The data does
show that increased plasticity leads to an increased number of attractors in behaviour
space. The data also suggests that attempting to reap that reward is a difficult
business.

The increased number of attractors in behaviour space is evidenced by the
richness of possible strategies in sparse networks with evolved sensor profiles when
compared to fixed feed forward agents. These attractors are enabled by both network
architecture and sensor plasticity as demonstrated by reversing manoeuvres or rear-
ward facing vision. It would appear that sensor plasticity also enables evolutionary
simplification of the problem space through rationalisation and may enable extra
dimensional bypasses between fitness peaks.

Yet the inclusion of all these extra possibilities within the search space leads to
a greater number of populations converging on poorer strategies. Not all the new
attractors are helpful to the task in hand. Poorer strategies with above latent fitness
are found more often in the early stages of a run. If no significant improvements are
found quickly these solutions dominate the population. Thereafter even prolonged
neutral search by mutation does not improve overall fitness.

The synchronisation of co-evolutionary partners slows evolution in the early
stages of a run and makes a population vulnerable to converging on a strategy with just
above latent fitness. If populations are fortunate enough to get beyond this, there is
evidence that both sensors and controllers become structurally coupled and achieve
higher overall fitness.

Additional domains of plasticity increase the range of possible behaviours open
to exploration. In the sort of limited trial with small populations undertaken here this
generates as many difficulties as it reaps rewards; evolution is slower and less reliable
although better agents can be found.
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4 4 Detour or not Detour?

Comparisons of observable behaviour in the support worlds suggest good agents
employ two simultaneous strategies: a simple photophilia and a more complex wall
following/avoidance technique. The photophilia involves keeping a light at the periphery
of vision, the agents can then spiral towards the source. Agents will perform clean
phototaxis in a single light environment; progress in a straight line untill near obstacles
in dark environments. Upon detection of an obstruction the agent will follow its
perimeter untill a source is re-sighted. If no source is sighted wall following will
continue. The best agents pan left and right to facilitate wall following with the
discontinuous obstructions. Some agents also show sleek reversing behaviour if caught in
a tight spot.

Figure 4.4.1: An agent performing phototropism and avoidance.

Examination of neuronal activations (figure 4.4.2 overleaf) in a typical agent
explains these behaviours. Position A on the graphs and folowing diagrams (figure 4.4.3)
serves to locate the traces in the diagram.

Trace one, 'leye’, shows the rythmic peaks as the source is kept at the periphery
of the left eye. Trace two shows the corresponding lesser stimulation from the right
eye. Lesioning the eye neurons shows that the right eye is chiefly responsible for
effective taxis with the left eye providing a modulatory effect. Increasing ‘reye’
membrane potential fires the right motor causing straight line travel for a period untill
this potential slowly decays. Once decayed, slow turning begins until the light is re-
sighted. Decay in ‘leye’ compensates for the discontinuity in source stimulation, lesioning
causes the agent’s path to wander. If 'reye’ is lesioned then 'rmot’ is insufficiently
stimulated and looping occurs.

Traces three and four illustrate the perturbation of the left distance sensor
pair which causes the avoidance behaviour and wall following. Increasing potential in the
left distance sensor inhibits the right motor neuron causing the agent to turn away from
the obstruction. Lesioning shows that allthough the inner sensory neuron 'ldist2’ assists
in good avoidance the outer sensory neuron 'ldist1’ is critical. Lesioning 'ldistl' causes the
agent to loop with insufficient stimulation of 'rmot’. Lesioning ‘ldist2' causes the agent to
crash into the fence end-post on about 1 in 10 trials. Lesioning shows that 'rdistl’ and
'rdist2’ have a slight modulatory effect but that good overall behaviour is maintained
without them.
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Brain scan for best agent.
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The response in the motor neuron ‘rmot' is far more sensitive to ‘ldist1 inhibition
than to 'reye’ excitation. This causes clean subsumption of the tropism by the more
important avoidance task. Less optimal agents often suffer from tropic interference in
their avoidance manouveres and get stuck.

So, 'Imot’ has a high latency perturbed only by strong excitationn of the distance
sensors, the left motor runs full forwards. Turning, the key to success in both
behaviours, is effected through 'rmot’. This motor neuron is kept excited at the
threshold of forwards motion making for sensitive control through ‘reye’ excitation and
'Idist1" inhibition. Functional modularity at the behavioural level is not repeated at the
neuronal level, loss of either 'reye’ or 'ldist1’ causes failure, both neurons contribute to
the near-threshold latency.

A fascinating role is played by ‘leye’, this neuron recieves high stimulation during
phototaxis but has little direct effect on motor control. Instead the decaying potential
serves as a memory that a source was recently sighted which in furn compensates for
the discontinuous source. Remembering the light allows for a smoother aproach
trajectory.
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Figure 4.4.2: one run of ‘best’ detour behaviour to match brain scan opposite

Figure 4.4.3: Lesion experiments.
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lesioning of ‘leye’ and ‘reye’ ...

...'Idist1” and ‘Idist2’...

O EPIOTS

..'rdistl” and ‘rdist2’.
Further examples of paths and their neuronal fraces can be found in appendix IT.
Arbib's frogs allegedly integrate their perceptual information into a single

coherent motor schema. In Arbib's experiments animals were shown to begin a straight-
line trajectory to avoid the fence (figure 4.4.4, left image overleaf).
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Figure 4.4.4: The frog’s detour path, all too easy for spiralling photo-philes.

Unfortunately this form of indirect path is endemic in spiralling phototropes. The
fenced worlds used were designed to prevent this sort of task evasion and demand
object avoidance skills. Therefore, no simple comparison is possible. If the light was
removed from the simulation while the agents were engaged in detour they did not go
looking where they thought it might be. In personal communication' Arbib has confirmed
that the same is true in the frog; the frog is 're-stimulated’ by the fly once it reaches
the edge of the fence. In all fairness, noticing the absence of the source and thus
abandoning the path woul/dbe the ‘intelligent’ thing to do. So, is this detour behaviour?

el =t o e S e R O

Figure 4.4.5. more complex detour environments used in the experiment.

It would seem that instead of integrated path planning like a frog these agents
perform phototaxis subsumed by avoidance behaviour. But, because this behaviour is
modulated by an internal 'memory’ of the sighted source we would suggest that this is a
form of detour behaviour. Just as frogs detour with less grace than rats (Arbib, in
personal communication) so our agents detour with less grace than frogs, but detour
they do.

" In conversation about avoidance in frogs, rats and evolved dynamic recurrent neural networks at
Biologically Inspired Robotics - the Legacy of W. Grey Walter, a workshop at HP Labs in Bristol, 16™-
18™ August 2002.
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5 Conclusions:

5.1 The Hypothesis.
The driving hypothesis of this work was:

that additional domains of plasticity increase evolvability.

A domain of plasticity was understood as a related set of state space variables which
could be ceded to evolutionary selection and optimisation; for example sensor
morphology or network structure. Evolvability was understood in terms of the speed and
ease of evolution on the one hand and the richness and variety of possible strategies or
attractors in behaviour space on the other.

The experimental evidence supports that the number of possible attractors in
behaviour space increases with increased plasticity. Yet within the compass of these
experiments this ultimately frustrated evolutionary progress; evolution was both slower
and more difficult in most cases. Strictly, the hypothesis as written should be rejected.

5.2 Criticism.

We regret not having the space to fully expand and clarify the philosophical
position underlying this work. It is hoped that embodiment be understood as something
more than merely being physical and that some sense of embodiment as a ground for
plasticity be allowed. The former point is found widely within the literature (see Ziemke
2001) but the latter is closer to the author's unfinished thoughts (see Cowan 2001).

Artificial evolution is a difficult process to master. There are many parameters
to set, many of which are sensitively dependent on both one another and the fitness
landscape involved. Add to this three classes of neural network and sensor morphology
and one can find oneself in a parametric nightmare. In all more than three hundred full
evolutionary runs were completed, many of which debugged and parameterised the
algorithms. Due to the noisy nature of the experiments ten times this number of runs
might not have yielded enough data. It would have been prudent to spend more time on
each of the fifteen experiments completed, to be more methodical about controlling
fewer variables.

Beyond simple parameterisation the results of the experiments were unclear and
mixed in their interpretation. We feel the analysis best fits the available data and
makes a reasonable statement of the situation. Yet some of these difficulties would be
ameliorated in larger scale evolutionary runs, especially employing those algorithms
which encourage speciation and look to long term species adaptation (e.g. Harvey 2001).
Perhaps this exploration deserves more time than was available here.

In the light of this, further work involving yet more domains of plasticity seems
unadvisable. One of the tenets of a synthetic approach to science would be to add
further complexity only when the existing system is fully understood (Beer 2002).
Instead, the existing ground should be covered in better detail.
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Behaviours were characterised as attractors within the agent-environment state
space. The application of dynamical systems theory techniques to a fuller examination of
the state space would yield clearer support for conclusions about the frequency and
types of these attractors. Although some attempt was made to classify observed
behavioural strategies, this was subjective. As the complexity of the network behaviour
increased, the difficulty of borderline cases made such observational classification
unworkable, the granularity of such observations being crude. Field notes gave a good
insight into what was going on and supported the intuitive analysis of evolutionary
statistics, nonetheless, it would be good to get better mathematical support from an
analysis of the state spaces.

Detour behaviour could be further refined, although this would be taking the
project away from evolutionary exploration into behavioural engineering. Path integration
could be encouraged by requiring the agents to minimise energy usage. Exploration of
the significance of 'leye’ as an internal representation could be used to fuel the ongoing
philosophical debate; in this project we have held our tongues!

5.3 Last Words.

Despite rejecting the working hypothesis, we believe these experiments have
been successful. The exploration of the effect of additional plasticity on evolvability has
demonstrated the complexity of the issue. Many more possibilities are enabled within
behaviour space but search becomes more difficult. However, the highest scoring agents
were found in fully evolved populations suggesting that increased plasticity canimprove
things. Cooperative co-evolution of controller and sensors led to observable structural
congruence in the case of handed behaviours and illustrated a selective pressure for
simpler and more robust systems through sensor rationalisation. Both these features
were seen to support fitter agents. The working hypothesis is rejected, but only just so.

Primitive detour behaviour was evolved in numerous populations of fully
connected dynamic-recurrent networks with both fixed and evolved sensors. Spatial
network encodings supported such agents to a lesser extent. The best detour agents
subsumed phototropism under wall following and performed well under all circumstances.
They were supported in their evolution by extended plasticity, grounded in sensor
evolution.
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Appendix II:

Further Detour Analysis.

Neuronal activations. Typical sucessful fully interconnected DRNN, seeded sensors.
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Both eyes have evolved together. L.mot has a latency which drives the motor forwards
but which is strongly inhibited by |.dist1 and I.dist2. R.mot is excited by l.eye and r.eye
and decays very slowly. So, proximity of an obstacle drives both motors into reverse
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with same-side inhibition the strength of which subsumes phototropism. Phototropism is
achieved through spiralling. Rmot's slow decay causes overshooting with a corresponding
sharp turn when rmot activation falls below the motor threshold.
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Neuronal activations, more complex ﬁxedAsenson‘uIIy interconnected DRNN
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Essentially the same behaviour grounded in a very much more complex brain. Neuronal
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connectivity ensures greater damping of any one neuron's contribution to overall
behaviour. R.dist1 has a significant inhibitory effect on rmot. Leye strongly excites both
Imot and rmot which both decay very slowly. Turning is initiated when Imot decays below

the motor threshold, bringing the source back to gently excite r.eye.
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Appendix III:

Implementation.

The algorithms necessary for this project come from a package written by this
author (Dan Cowan) and Tony Poppleton.

Developed during studies at the University of Sussex to support the rapid
deployment of experiments into artificial life, it was the aim of the authors to minimise
the coding time involved in new artificial life projects by providing extensive libraries of
the most common algorithms. This is still very much a work in progress.

The package comprises of a set of class definitions grouped into sub-packages or
libraries including neural networks, 2D geometry and physics, genetic algorithms and
various a-life support utilities. Each package contains further sub packages such as
dynamic-recurrent and feed forward networks or single distributed grid or co-
evolutionary genetic algorithms.

The algorithms were developed using Java 1.4.0 to support maximum platform
independence and utilise Java's interface technologies to secure generality of algorithm
and extensibility. Anyone wishing to add a new genetic algorithm class to the package
must merely fulfil the genetic algorithm interface requirements.

The world, agents, sensors and the programs which drive the algorithms such as
the GUI below were written by this author alone and are specific to this project.
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The GUI developed for viewing agent behaviour and generating telemetry in the form of data files,
graphs and jpegs of the agent’s world, body and brain states.

Appendix IV contains project specific code while appendix V contains the package code
and a brief explanation of structure and use.
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Appendix IV:

Project Specific Source code.

Almost 150 files of source code follow. This appendix contains the project
specific code including the package si mul at or 2D and the two main driver programs:
Evol ve and Vi ever.

Evol ve is a command line based application which evolves a specified population
to a specified fitness test. The command line options are listed below:

USAGE: java Evol ve [args]
-g n Sets the nunber of generations to n (currently 500)

-t n Sets the nunmber of trials to n (currently 5)

-pop n Sets the population to n (currently 100)

-ff n Sets fitness test(1l.Avoid 2. Cylinder 3.Barrier) (ff=3)
-1 n Sets the maxi mum nunber of steps per trial to n (i=100)
-n n Sets the level of noise to n (currently 0.25)

-w n Sets the world to n (currently worlds\barrierTest.wor)
-S n Loads a sensor file, n (currently null)

-p n Loads a population, n (currently null)

-nt n Network (1.ff 2.drnn 3.spatial 4.sectored) (nt=4)

-nn n Sets nunber of network nodes to n (currently 16)

-nc n Sets network connectivity to n (currently 0.5)

-nm n Sets the net nmutation rate to n (currently 1.0)

-sm n Sets the sensor nmutation rate to n (currently 0.05)
-anb n Sets anbi ent sensors to n (currently 0)

-dir n Sets directional light sensors to n (currently 2)

-ray n Sets single ray light sensors to n (currently 0)

-son n Sets sonar sensors to n (currently 2)

-ec -lec Flips elite child flag (currently true)

-er -ler Flips elite replace flag (currently true)

-sa -!sa Flips the save all populations flag (currently fal se)
-st -Ist Flips the save date stanped flag (currently true)

-? Prints usage hel p.

Vi ever is the Swing based GUI application in appendix III, for viewing evolved
populations and generating telemetry for analysis. Called from the command line it
defaults to view the last evolved population but can be pointed at any data directory
containing the files saved by the Evol ve program during a run. Populations can be
trialled in different worlds while data files of sensor/motor/neuronal values are written
to disk, jpegs of the agent’s path, brain and sensor profile can be also be recorded. Data
is written in a Matlab or Access friendly style.
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Appendix V:

Alife Package Source code.

The package alife breaks down into a number of related sub-packages, files are
printed in sub-package order, starting with those of: al i fe. evol uti on. *

alife
evol ution genetic interfaces.
encodi ng genotype to phenotype base encodings.
ga genetic algorithms.
ra reproduction algorithm container classes.
mut ati on mutation operators.
conbi nati on combination operators.
geonetry2D radian based geometry classes.
gui graphical extensions of geometry classes.
neurl nets neural network interfaces.
drnn dynamic-recurrent neural network.
ffnn perceptron neural network.
utils utilities for file management, time

management, additional maths, graphing,
and statistics.

Each object set is governed through interfaces which determine the ways in
which an object may be used. For example, all neural networks must have fire() and
updat e() methods, calling fire() on any neural network will have the same functional
result.

The reproduction algorithm determines mutation and crossover operators for
each chromosome on a genome. The fitness function object contains the encodings for
translating the genomes within a population into their phenotypic form and the means of
their evaluation.

A genetic algorithm object is initialised with a population size, number of trials,
generations and other necessary flags. The method:

ga.iterate(ff, ra)

runs the algorithm for one generation using the fitness function and reproduction
algorithm passed in the call. The code:

whi | e (ga. i sRunni ng)
ga.iterate(ff, ra);

drives the algorithm for the number of generations specified in the constructor.
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